Оборудование для производства кирпича ООО ВОГЕАН Строительство заводов по производству кирпича
Основная деятельность нашего предприятия: строительство заводов, производство оборудования, технологических линий и станков
по производству: кирпича, блока, тротуарной плитки, бордюров и других строительных материалов (вибропрессования и гиперпрессования),
а так же силикатного кирпича (с автоклавной обработкой) и керамического кирпича (с обжигом).

Фото продукции









Значение экспериментальных исследований железобетона

Экспериментальные исследования по изучению совместной работы двух различных по своим физико-механическим свойствам материалов — бетона и стальной арматуры — проводились с самого начала появления железобетона. Экспериментами установлено, что нелинейные деформации бетона и трещины в растянутых зонах оказывают существенное влияние на напряженно-деформированное состояние железобетонных элементов. Допущения о линейной зависимости между напряжениями и деформациями и основанные на этих допущениях формулы сопротивления упругих материалов для железобетона часто оказываются неприемлемыми.
Теория сопротивления железобетона строится на опытных данных и законах механики и исходит из действительного напряженно-деформированного состояния элементов на различных стадиях нагружения внешней нагрузкой. По мере накопления опытных данных методы расчета железобетонных конструкций совершенствуются. Три стадии напряженно-деформированного состояния Опыты с различными железобетонными элементами — изгибаемыми, внецентренно растянутыми, внецентренно сжатыми с двузначной эпюрой напряжений —показали, что при постепенном увеличении внешней нагрузки можно наблюдать три характерные стадии напряженно-деформированного состояния: стадия I — до появления трещин в бетоне растянутой зоны, когда напряжения в бетоне меньше временного сопротивления растяжению и растягивающие усилия воспринимаются арматурой и бетоном совместно; стадия II — после появления трещин в бетоне растянутой зоны, когда растягивающие усилия в местах, где образовались трещины, воспринимаются арматуро и и участком бетона над трещиной, а на участках между трещинами — арматурой и бетоном совместно; стадия III — стадия разрушения, характеризующаяся относительно коротким периодом работы элемента, когда напряжения в растянутой стержневой арматуре достигают физического или условного предела текучести, в высокопрочной арматурной проволоке—временного сопротивления, а напряжения в бетоне сжатой зоны — временного сопротивления сжатию; в зависимости от степени армирования элемента последовательность разрушения зон растянутой и сжатой может изменяться.
Рассмотрим три стадии напряженно-деформированного состояния в зоне чистого изгиба железобетонного элемента при постепенном увеличении нагрузки.
Стадия I. При малых нагрузках на элемент напряжения в бетоне и арматуре невелики, деформации носят преимущественно упругий характер; зависимость между напряжениями и деформациями линейная и эпюры нормальных напряжений в бетоне сжатой и растянутой зон сечения треугольные. С увеличением нагрузки на элемент в бетоне растянутой зоны развиваются неупругие деформации, эпюра напряжений становится криволинейной, напряжения приближаются к пределу прочности при растяжении. Этим характеризуется конец стадии I. При дальнейшем увеличении нагрузки в бетоне растянутой зоны образуются трещины, наступает новое качественное состояние.
Стадия II. В том месте растянутой зоны, где образовались трещины, растягивающее усилие воспринимается арматурой и участком бетона растянутой зоны над трещиной. В интервалах растянутой зоны между трещинами сцепление арматуры с бетоном сохраняется, и по мере удаления от краев трещин растягивающие напряжения в бетоне увеличиваются, а в арматуре уменьшаются. С дальнейшим увеличением нагрузки на элемент в бетоне сжатой зоны развиваются неупругие деформации, эпюра нормальных напряжений искривляется, а ордината максимального напряжения перемещается с края сечения в его глубину. Конец стадии II характеризуется началом заметных неупругих деформаций в арматуре.
Стадия III, или стадия разрушения. С дальнейшим увеличением нагрузки напряжения в стержневой арматуре достигают физического или условного предела текучести; напряжения в бетоне сжатой зоны под влиянием нарастающего прогиба элемента и сокращения высоты сжатой зоны также достигают временного сопротивления сжатию. Разрушение железобетонного элемента начинается по арматуре растянутой зоны и заканчивается раздроблением бетона сжатой зоны. Такое разрушение носит пластический характер, его называют случаем 1. Если элемент в растянутой зоне армирован высокопрочной проволокой с малым относительным удлинением при разрыве (~4 %), то одновременно с разрывом проволоки происходит и раздробление бетона сжатой зоны, разрушение носит хрупкий характер, его также относят к случаю 1.
В элементах с избыточным содержанием растянутой арматуры — переармированных — разрушение происходит по бетону сжатой зоны, переход из стадии II в стадию III происходит внезапно. Разрушение переармированных сечений всегда носит хрупкий характер при неполном использовании растянутой арматуры; его называют случаем 2.
Ненапрягаемая арматура сжатой зоны сечения в стадии III испытывает сжимающие напряжения, обусловленные предельной сжимаемостью бетона.
Сечения по длине железобетонного элемента испытывают разные стадии напряженно-деформированного состояния; так, в зонах с небольшими изгибающими моментами — стадия I, по мере возрастания изгибающих моментов — стадия II, в зоне с максимальным изгибающим моментом — стадия III. Разные стадии напряженно-деформированного состояния железобетонного элемента могут возникать и на различных этапах — при изготовлении и предварительном обжатии, транспортировании и монтаже, действии эксплуатационной нагрузки. При обжатии в предварительно напряженном элементе возникают довольно высокие напряжения. Под влиянием развития неупругих деформаций эпюра сжимающих напряжений приобретает криволинейное очертание. В процессе последовательного загружения внешней нагрузкой предварительные сжимающие напряжения погашаются, а возникающие растягивающие напряжения приближаются к временному сопротивлению бетона растяжению. Перемещение в глубь сечения ординаты с максимальным напряжением на криволинейной эпюре обусловлено последовательным увеличением значений еь и одновременным уменьшением Еь от оси к внешнему краю сечения. Особенность напряженно-деформированного состояния предварительно напряженных элементов проявляется главным образом в стадии I. Внешняя нагрузка, вызывающая образование трещин, значительно увеличивается (в несколько раз), напряжение в бетоне сжатой зоны и высота этой зоны также значительно возрастают. Интервал между стадиями I и III сокращается. После образования трещин в стадиях II и III напряженные состояния элементов с предварительным напряжением и без него сходны. Процесс развития трещин в растянутых зонах бетона В железобетонных элементах трещины могут быть вызваны условиями твердения и усадки бетона, предварительным обжатием при изготовлении, перенапряжением материалов при эксплуатации — перегрузкой, осадкой опор, изменением температуры и т. п. Трещины от перенапряжения чаще всего появляются в растянутых зонах, реже в сжатых. Трещины в растянутых зонах элементов, не заметные на глаз, появляются под нагрузкой даже в безукоризненно выполненных железобетонных конструкциях. Образование их вызывается малой растяжимостью бетона, не способного следовать за значительными удлинениями арматуры при высоких рабочих напряжениях. В предварительно напряженных конструкциях трещины появляются при сравнительно больших значениях нагрузки. Опыт эксплуатации железобетонных конструкций зданий и сооружений показывает, что при ограниченной ширине раскрытия эти трещины не опасны, и не нарушают общей монолитности железобетона.
Арматура в бетоне растянутой зоны элемента несколько сглаживает отрицательное влияние неоднородности структуры и нарушений сплошности бетона, однако при обычном содержании арматуры предельная растяжимость армированного бетона лишь незначительно превышает предельную растяжимость неармированного бетона.
Трещины в сжатых зонах обыкновенно указывают на несоответствие размеров сечения усилиям сжатия, они опасны для прочности конструкции.
В процессе развития трещин в растянутых зонах бетона различают три этапа: 1) возникновение трещин, когда они могут быть еще невидимыми; 2) образование трещин, когда они становятся видимыми невооруженным глазом, и 3) раскрытие трещин до предельно возможной величины.
Можно считать, что в элементах с обычным содержанием арматуры образование трещин совпадает с их возникновением, поэтому рассматривают два этапа: 1) образование трещин и 2) раскрытие трещин. Метод расчета по допускаемым напряжениям Метод расчета прочности сечений изгибаемых элементов по допускаемым напряжениям исторически сформировался первым; в нем за основу взята стадия II напряженно-деформированного состояния и приняты следующие допущения: 1) бетон растянутой зоны не работает, растягивающее напряжение воспринимается арматурой; 2) бетой сжатой зоны работает упруго, а зависимость между напряжениями и деформациями линейная согласно закону Гука; 3) нормальные к продольной оси сечения плоские до изгиба остаются плоскими после изгиба, т. е. гипотеза плоских сечений.
Как следствие этих допущений, в бетоне сжатой зоны принимается треугольная эпюра напряжений и постоянное значение отношения модулей упругости материалов.
Напряжения в бетоне и арматуре, ограничивались допускаемыми напряжениями, которые устанавливались как некоторые доли временного сопротивления бетона сжатию и предела текучести арматуры.
Основной недостаток метода расчета сечений по допускаемым напряжениям заключается в том, что бетон рассматривается как упругий материал. Действительное распределение напряжений в бетоне по сечению в стадии II не отвечает треугольной эпюре напряжений, a v — число не постоянное, зависящее от значения напряжения в бетоне, продолжительности его действия и других факторов. Не помогает и установление разных значений числа v в зависимости от марки бетона. Установлено, что действительные напряжения в арматуре меньше вычисленных. Этот метод расчета не только не дает возможности спроектировать конструкцию с заранее заданным коэффициентом запаса, но и не позволяет определить истинные напряжения в материалах. В ряде случаев приводит к излишнему расходу материалов, требует установки арматуры в бетоне сжатой зоны и др.
Особенно ярко выяснились недостатки метода при внедрении в практику новых видов бетона (тяжелых бетонов высоких марок, легких бетонов на пористых заполнителях) и арматурных сталей более высокой прочности. Сущность метода расчета по предельным состояниям Метод расчета конструкций по предельным состояниям является дальнейшим развитием метода расчета по разрушающим усилиям. При расчете по этому методу четко устанавливаются предельные состояния конструкций и вводится система расчетных коэффициентов, гарантирующих конструкцию от наступления этих состояний при самых неблагоприятных сочетаниях нагрузок и при наименьших значениях прочностных характеристик материалов. Прочность сечений также определяется по cтадии разрушения, но безопасность работы конструкции под нагрузкой оценивается не одним синтезирующим коэффициентом запаса, а системой расчетных коэффициентов. Конструкции, запроектированные и рассчитанные по методу предельного состояния, получаются несколько экономичнее. Две группы предельных состояний Предельными считаются состояния, при которых конструкции перестают удовлетворять предъявляемым к ним в процессе эксплуатации требованиям, т. е. теряют способность сопротивляться внешним нагрузкам и воздействиям или получают недопустимые перемещения или местные повреждения.
Железобетонные конструкции должны удовлетворять требованиям расчета по двум группам предельных состояний: по несущей способности — первая группа предельных состояний; по пригодности к нормальной эксплуатации — вторая группа предельных состояний.
Расчет по предельным состояниям первой группы выполняют, чтобы предотвратить: , хрупкое, вязкое или иного характера разрушение (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением);
потерю устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т. п.) или ее положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров и т. п.);
усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся нагрузки подвижной или пульсирующей: подкрановых балок, шпал, рамных фундаментов и перекрытий под неуравновешенные машины и т.п.);
разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (периодического или постоянного воздействия агрессивной среды, действия попеременного замораживания и оттаивания и т. п.).
Расчет по предельным состояниям второй группы выполняют, чтобы предотвратить:
образование чрезмерного или продолжительного раскрытия трещин (если по условиям эксплуатации образование или продолжительное раскрытие трещин допустимо);
чрезмерные перемещения (прогибы, углы поворота, углы перекоса и амплитуды колебаний).
Расчет по предельным состояниям конструкции в целом, а также отдельных ее элементов или частей производится для всех этапов: изготовления, транспортирования, монтажа и эксплуатации; при этом расчетные схемы должны отвечать принятым конструктивным решениям и каждому из перечисленных этапов. Расчетные факторы Расчетные факторы — нагрузки и механические характеристики бетона и арматуры (временное сопротивление, предел текучести) — обладают статистической изменчивостью (разбросом значений). Нагрузки и воздействия могут отличаться от заданной вероятности превышения средних значений, а механические характеристики материалов могут отличаться от заданной вероятности снижения средних значений. В расчетах по предельным состояниям учитывают статистическую изменчивость нагрузок и механических характеристик материалов, факторы нестатистического характера и различные неблагоприятные или благоприятные физические, химические и механические условия работы бетона и арматуры, изготовления и эксплуатации элементов зданий и сооружений. Нагрузки, механические характеристики материалов и расчетные коэффициенты нормируют.
Значения нагрузок, сопротивления бетона и арматуры устанавливают по главам СНиП «Нагрузки и воздействия» и «Бетонные и железобетонные конструкции».


Версия для печати  Версия для печати


 


Энциклопедия по бетону Все о бетоне и его свойства Применение бетона в стройиндустрии Строительное оборудование Бетонные работы Все о кирпиче Все о цементе и его свойствах Нерудные материалы Сухие смеси Железобетонные иделия и конструкции Статьи о строительстве и стройиндустрии Строительные материалы Строительные материалы - часть 2 Снабжение Промышленноcть и оборудование Промышленноcть и оборудование - часть 2

Смотрите так же другие статьи
Выбор оптимальной консистенции бетонной смеси и водоцементного отношения При достижении полной уплотненности чем больше водоцементное отношение, тем ниже водонепроницаемость бетона. Это объясняется испарением воды, которое способствует образованию в бетоне капиллярных пор, являющихся основным путем... >>>
 
Гибка арматурной стали При изготовлении арматурных изделий гнут как стержни арматуры, так и сетки для пространственных каркасов. Для гибки арматуры используют как ручные, так и приводные станки. Вручную гнут арматурную сталь при небольшом объеме работ. Арматуру гнут вокруг центрального загибочного ... >>>
 
Гидроизоляционные материалы из пластиков В связи с развитием химии появились новые изоляционные материалы, обладающие замечательными свойствами. Это — винипласт, винипластикат, полиэтиленовые и другие пленки. Строительная практика выработала два основных способа применения рулонных пленочных ... >>>
 
Энергореформа в Литве Реформа осуществлялась в четыре этапа: * акционирование; * перевод на коммерческую основу; * реструктуризация; «приватизация электростанций и распределительных сетей». Сейчас заканчивается уже четвертый этап реформы. Законодательство, которое послужило... >>>
 
Древесные гранулы и их использование Получение готовой продукции из древесины сопряжено с огромными потерями, которые принято называть отходами. Отходы на этапе подготовки леса могут достигать нескольких десятков процентов (пни, сучья, хвоя и т.д.). Типичная лесопилка превращает около 60 % древес... >>>
 
Фронтальные погрузчики Данный типдорожной техники занимает второе место в мире по объему рынка основных видов дорожной . Универсальность данного оборудования не только в возможности его широкого использования, но и в вероятности оснащения его различными видами сменного оборудования: ковшами, вило... >>>
 
Белый цемент - материал XXI века В последнее десятилетие наметился позитивный сдвиг в развитии строительной индустрии. Многие российские города преображаются “на глазах”. Преодолевая традиции однотипности и безликости, архитекторы создают множество красивых и оригинальных проектов, отве... >>>
 
Бетон и нанотехнологии Под нанотехнологиями понимаются исследования и разработки с частицами и системами, имеющими размеры от 1 до 100nm (нмк) Если современные проводниковые и компьютерные технологии оперируют частицами в микромасштабе (10-6), т.е. в наиболее продвинутой части науки совершается пер... >>>
 
Бетон получил свой евростандарт Европейский комитет по стандартизации CEN был создан для разработки евростандартов. В его составе находятся различные технические комитеты, в том числе по бетону и железобетону: ТС   51 - "Цементы" ТС 104 - "Бетон и составляющие е... >>>
 


© 2005-2024 г. http://www.vogean.com Все права защищены. Группа компаний "ВОГЕАН".
Сайт работает на системе управления сайтом General-CMS

Rambler's Top100 Яндекс цитирования џндекс.Њетрика