Оборудование для производства кирпича ООО ВОГЕАН Строительство заводов по производству кирпича
Основная деятельность нашего предприятия: строительство заводов, производство оборудования, технологических линий и станков
по производству: кирпича, блока, тротуарной плитки, бордюров и других строительных материалов (вибропрессования и гиперпрессования),
а так же силикатного кирпича (с автоклавной обработкой) и керамического кирпича (с обжигом).

Фото продукции









Сцепление арматуры с бетоном

В железобетонных конструкциях благодаря сцеплению материалов скольжения арматуры в бетоне под нагрузкой не происходит. Прочность сцепления арматуры с бетоном оценивается сопротивлением выдергиванию или вдавливанию арматурных стержней, заанкерованных в бетоне. Согласно опытным данным, прочность сцепления зависит от:
1) зацепления в бетоне выступов на поверхности арматуры периодического профиля;
2) сил трения, развивающихся при контакте арматуры с бетоном под влиянием его усадки;
3) склеивания арматуры с бетоном, возникающего благодаря клеющей способности цементного геля.
Наибольшее влияние на прочность сцепления оказывает первый фактор. Если арматура гладкая и круглая, сопротивление скольжению уменьшается в 2—3 раза. Исследования показали, что распределение напряжений сцепления арматуры с бетоном по длине заделки стержня неравномерно, и наибольшее напряжение сцепления тстах не зависит от длины анкеровки стержня.
Прочность сцепления возрастает с повышением класса бетона, уменьшением водоцементного отношения, а также с увеличением возраста бетона. При недостаточной заделке к концам стержней приваривают коротыши или шайбы (по концам стержней из гладкой стали класса A-I устраивают крюки). При вдавливании арматурного стержня в бетон прочность сцепления больше, чем при его выдергивании, вследствие сопротивления окружающего слоя бетона поперечному расширению сжимаемого стержня. С увеличением диаметра стержня и напряжения в нем Os прочность сцепления при сжатии возрастает, а при растяжении уменьшается. Отсюда следует, что для лучшего сцепления арматуры с бетоном при конструировании железобетонных элементов диаметр растянутых стержней следует ограничивать. Анкеровка арматуры в бетоне В железобетонных конструкциях закрепление концов арматуры в бетоне — анкеровка — достигается запуском арматуры за рассматриваемое сечение на длину зоны передачи усилий с арматуры на бетон (обусловленную сцеплением арматуры с бетоном), а также с помощью анкерных устройств.
Ненапрягаемая арматура из гладких стержней класса A-I снабжена на концах анкерами в виде полукруглых крюков диаметром 2,5 d, а в конструкциях из бетонов на пористых заполнителях — диаметром 5 d. Анкерами гладких стержней в сварных сетках и каркасах служат стержни поперечного направления, поэтому их применяют без крюков на концах. Арматурные стержни периодического профиля обладают значительно лучшим сцеплением с бетоном, их применяют без крюков на концах.
Ненапрягаемую арматуру периодического профиля заводят за нормальное к продольной оси элемента сечение, в котором она учитывается с полным расчетным сопротивлением на длину зоны анкеровки.
На крайних свободных опорах изгибаемых элементов продольные растянутые стержни заводят для анкеровки за внутреннюю грань опоры на длину не менее 10d; если наклонные трещины в растянутой зоне не образуются, то стержни заводят за внутреннюю грань опоры на длину не менее 5d.
Напрягаемая арматура — стержни периодического профиля или арматурные канаты — при натяжении на упоры и достаточной прочности бетона применяется в конструкциях без специальных анкеров; арматура при натяжении на бетон (арматурные пучки) или натяжении на упоры в условиях недостаточного сцепления с бетоном (гладкая высокопрочная проволока) всегда закрепляется в бетоне специальными анкерами. Длина зоны анкеровки напрягаемой арматуры без анкеров принимается равной длине зоны передачи напряжений с арматуры на бетон.
Предварительное напряжение в арматуре считается изменяющимся линейно от нуля у края элемента до полного значения в сечении, расположенном на расстоянии 1Р от края элемента.
Для того чтобы бетон при передаче на него усилий с напрягаемой арматуры не раскалывался, концы элементов усиливают закладными деталями с анкерными стержнями, хомутами и т. п.
Для захвата, натяжения и закрепления на упорах канатов и стержневой арматуры периодического профиля применяют специальные цанговые захваты; кроме того, для стержневой арматуры применяют приваренные коротыши или шайбы, нарезку накатом без ослабления сечения, высаженные головки правильной формы или неправильной формы со втулкой.
Анкеры при натяжении арматуры на бетон должны обеспечивать хорошую передачу усилия с арматуры на бетон. В местах расположения анкеров у конца элементов бетон усиливают дополнительными хомутами, сварными сетками, спиралями, а для равномерной передачи усилий с арматуры на бетон под анкерами размещают стальные плиты.
Заводской гильзовый анкер арматурного пучка состоит из стержня с нарезкой, заведенного внутрь пучка, и гильзы из мягкой стали, надетой поверх пучка. При протяжке через обжимное кольцо металл гильзы течет и запрессовывает проволоки пучка. Закрепление этого анкера после натяжения арматурного пучка на бетон домкратом производится гайкой концевого стержня, затягиваемой до упора в торец элемента.
Упором домкрата в торец элемента арматурный пучок натягивают до заданного напряжения, затем специальным поршнем, выдвигаемым из домкрата, проволоки пучка заклинивают конической трубкой в стальной колодке.
Анкер стаканного типа применяют для закрепления более мощного арматурного пучка с несколькими рядами концентрически расположенных проволок. Домкрат захватывает анкер и оттягивает его с упором на бетон на заданную величину; в зазор, образовавшийся между анкером и торцом элемента, вводят шайбы с прорезями, благодаря чему арматурный пучок удерживается в напряженном состоянии. Усадка железобетона В железобетонных конструкциях стальная арматура вследствие ее сцепления с бетоном становится внутренней связью, препятствующей свободной усадке бетона. Согласно опытным данным, усадка и набухание железобетона в ряде случаев вдвое меньше, чем усадка и набухание бетона. Стесненная деформация усадки бетона приводит к появлению в железобетонном элементе начальных, внутренне уравновешенных напряжений растягивающих в бетоне и сжимающих в арматуре. Под влиянием разности деформаций свободной усадки бетонного элемента и стесненной усадки армированного элемента возникают средние растягивающие напряжения в бетоне.
При усадке железобетона растягивающие напряжения в бетоне зависят от свободной усадки бетона, коэффициента армирования , класса бетона. С увеличением содержания арматуры в бетоне растягивающие напряжения увеличиваются, и, если они достигают временного сопротивления при растяжении, возникают усадочные трещины. Растягивающие напряжения в бетоне при стесненной усадке элемента, армированного односторонней несимметричной арматурой, возрастает вследствие внецентренного приложения к сечению усилия в арматуре.
Начальные растягивающие напряжения в бетоне от усадки способствуют более раннему образованию трещин в тех зонах железобетонных элементов, которые испытывают растяжение от нагрузки. Однако с появлением трещин влияние усадки уменьшается. В стадии разрушения усадка не влияет на несущую способность статически определимого железобетонного элемента. В статически неопределимых железобетонных конструкциях (арках, рамах и т. п.) лишние связи препятствуют усадке железобетона и поэтому усадка вызывает появление дополнительных внутренних усилий. Влияние усадки эквивалентно понижению температуры на определенное число градусов. Для того чтобы уменьшить дополнительные усилия от усадки, железобетонные конструкции промышленных и гражданских зданий большой протяженности делят усадочными швами на блоки. Ползучесть железобетона Ползучесть железобетона является следствием ползучести бетона. Стальная арматура, как и при усадке, становится внутренней связью, препятствующей свободным деформациям ползучести. В железобетонном элементе под нагрузкой стесненная ползучесть приводит к перераспределению усилий между арматурой и бетоном. Процесс перераспределения усилий интенсивно протекает в течение первых нескольких месяцев, а затем в течение длительного времени (более года) постепенно затухает. Продольные деформации арматуры и бетона центральнo-сжатой железобетонной призмы благодаря сцеплению материалов одинаковы
Релаксация напряжений в бетоне железобетонной призмы наблюдается и при постоянных напряжениях в арматуре. Напряжения в бетоне с течением времени уменьшаются, так как коэффициент с течением времени уменьшается.
На работу коротких сжатых железобетонных элементов ползучесть бетона оказывает положительное влияние, обеспечивая полное использование прочности бетона и арматуры; в гибких сжатых элементах ползучесть вызывает увеличение начальных эксцентриситетов, что может снижать их несущую способность; в изгибаемых элементах ползучесть вызывает увеличение прогибов; в предварительно напряженных конструкциях ползучесть приводит к потере предварительного напряжения. Ползучесть и усадка железобетона протекают одновременно и совместно влияют на работу конструкции. Защитный слой бетона Защитный слой бетона в железобетонных конструкциях создается размещением арматуры на некотором удалении от поверхности элемента. Защитный слой бетона необходим для совместной работы арматуры с бетоном на всех стадиях изготовления, монтажа и эксплуатации конструкций, он защищает арматуру от внешних воздействий, высокой температуры, агрессивной среды и т. п. Толщина защитного слоя бетона на основании опыта эксплуатации железобетонных конструкций устанавливается в зависимости от вида и диаметра арматуры, размера сечений элемента, вида и класса бетона, условий работы конструкции и т.д.
Толщина защитного слоя бетона для продольной арматуры ненапрягаемой или с натяжением на упоры должна быть не менее диаметра стержня или каната; в плитах и стенках толщиной до 100 мм —10 мм; в плитах и стенках толщиной более 100 мм, а также балках высотой менее 250 мм — 15 мм; в балках высотой 250 мм и более — 20 мм; в сборных фундаментах—30 мм. Толщина защитного слоя бетона у концов продольной напрягаемой арматуры на участке передачи усилий с арматуры на бетон должна составлять не менее двух диаметров стержня из стали классов A-IV, Ат-IV или арматурного каната и не менее трех диаметров стержня классов A-V, A-VI, AT-V, AT-VI. Причем толщину защитного слоя бетона на указанном участке длины элемента принимают не менее 40 мм для стержневой арматуры рсех классов и не менее 20 мм для арматурного каната. Защитный слой бетона при наличии стальных опорных деталей допускается у концов элемента принимать таким же, как и для сечения в пролете.
Толщина защитного слоя бетона для продольной напрягаемой арматуры, натягиваемой на бетон и располагаемой в каналах (расстояние от поверхности конструкции до ближайшей к ней поверхности канала), должна быть не менее 20 мм и не менее половины диаметра канала, а при диаметре арматурного пучка 32 мм и более еще и не менее этого диаметра.
Расстояние от концов продольной ненапрягаемой арматуры до торца элементов должно быть не менее 10 мм, а для сборных элементов большой длины (панелей длиной более 12 м, ригелей — более 9 м, колонн — более 18 м) — не менее 15 мм. Минимальную толщину защитного слоя бетона для поперечных стержней каркасов и хомутов при высоте сечения элемента менее 250 мм принимают 10 мм, при высоте сечения элемента 250 мм и более 15 мм. Средняя плотность железобетона Средняя плотность тяжелого железобетона при укладке бетонной смеси с вибрированием равна 2500 кг/м3, при укладке бетонной смеси без вибрирования — 2400 кг/м3. При значительном содержании арматуры (свыше 3%) плотность железобетона определяют как сумму масс бетона и арматуры в 1 м3 объема конструкции. Средняя плотность легкого железобетона определяется так же, как сумма масс бетона и арматуры в 1 м3 объема конструкции. Армоцемент Армоцемент — особый вид железобетона, приготовленный на цементно-песчаном бетоне, армированный сетками из тонкой проволоки диаметром 0,5—1 мм с мелкими ячейками размером до 10Х10 мм. Насыщение сетками густое, расстояние между сетками 3—5 мм, что позволяет получить достаточно однородный по свойствам материал. Из армоцемента изготовляют конструкции с малой толщиной стенок 10—30 мм (оболочки, волнистые своды и т. п.).
Предельная растяжимость бетона в армоцементных конструкциях благодаря значительному увеличению поверхности сцепления арматуры с бетоном возрастает. Малая ширина раскрытия трещин — основная особенность армоцемента, позволяющая достигнуть полного использования прочности арматурных сеток в конструкциях без предварительного напряжения. В растянутых зонах армоцементных конструкций возможно комбинированное армирование — сетками и напрягаемой арматурой. Армоцементные конструкции можно применять лишь при нормальной влажности и отсутствии агрессивных воздействий среды, так как их коррозионная стойкость невелика. Огнестойкость их меньше, чем огнестойкость железобетонных конструкций. Армоцементные конструкции не рекомендуется применять при систематическом воздействии ударной нагрузки. Армополимербетон Армополимербетон изготовляют из полимербетона со стальной или неметаллической арматурой. Арматура хорошо сцепляется с полимербетоном. Коррозия стальной арматуры в армополимербетоне не наблюдается. Армополимербетон обладает высокой коррозионной стойкостью и поэтому применение его целесообразно в конструкциях и сооружениях, работающих в агрессивной среде и при высоком гидростатическом давлении. Воздействие температуры на железобетон Под воздействием температуры в железобетоне возникают внутренние взаимно уравновешенные напряжения, вызванные некоторым различием в значениях коэффициента линейной температурной деформации цементного камня, зерен заполнителей и стальной арматуры. При воздействии на конструкцию температуры до 50°С внутренние напряжения невелики и практически не приводят к снижению прочности бетона. В условиях систематического воздействия технологических температур (порядка 60—200°С) необходимо учитывать некоторое снижение механической прочности бетона (примерно на 30 %) При длительном нагреве до 500—600 °С и последующем охлаждении бетон разрушается.
Основными причинами разрушения бетона при воздействии высоких технологических температур являются значительные внутренние растягивающие напряжения, возникающие вследствие разности температурных деформаций цементного камня и зерен заполнителей, а также вследствие увеличения в объеме свободной извести, которая выделяется при дегидратации минералов цемента и гасится влагой воздуха.
Для конструкций, испытывающих длительное воздействие высоких технологических температур, применяют специальный жаростойкий бетон. Прочность сцепления арматуры периодического профиля с бетоном снижается при температуре до 500°С на 30%. Однако прочность сцепления гладкой арматуры с бетоном начинает резко снижаться уже при 250 °С.
В статически неопределимых железобетонных конструкциях под воздействием сезонных изменений температур возникают дополнительные усилия, которые при большой протяженности конструкции становятся весьма значительными. Чтобы уменьшить дополнительные усилия от изменения температуры, здания большой протяженности делят на отдельные блоки температурными швами, которые обычно совмещают с усадочными швами. Коррозия железобетона и меры защиты от нее Коррозионная стойкость элементов железобетонных конструкций зависит от плотности бетона и степени агрессивности среды. Коррозия бетона, имеющего недостаточную плотность, может происходить от воздействия фильтрующейся воды, которая растворяет составляющую часть цементного камня — гидрат окиси кальция. Наибольшей растворяющей способностью обладает мягкая вода. Внешним признаком такой коррозии бетона являются белые хлопья на его поверхности. Другой вид коррозии бетона возникает под влиянием газовой или жидкой агрессивной среды: кислых газов в сочетании с повышенной влажностью, растворов кислот, сернокислых солей и др. При взаимодействии кислоты с гидратом окиси кальция цементного камня бетон разрушается. Продукты химического взаимодействия агрессивной ере ды и бетона, кристаллизуясь, постепенно заполняют поры и каналы бетона. Рост кристаллов приводит к разрыву стенок пор, каналов и быстрому разрушению бетона. Наиболее вредны для бетона соли ряда кислот, особенно серной кислоты; они образуют в цементе сульфат кальция и алюминия. Сульфатоалюминат кальция, растворяясь, вытекает и образует белые подтеки на поверхности бетона. Весьма агрессивны грунтовые воды, содержащие сернокислотный кальций, а также воды с магнезиальными и аммиачными солями.
Морская вода при систематическом воздействии оказывает вредное влияние на бетон, поскольку содержит сульфатомагнезит, хлористую магнезию и другие вредные соли.
Коррозия арматуры (ржавление) происходит в результате химического и электролитического воздействия окружающей среды; обычно она протекает одновременно с коррозией бетона, но может протекать и независимо от коррозии бетона. Продукт коррозии арматуры имеет в несколько раз больший объем, чем арматурная сталь, и создает значительное радиальное давление на окружающий слой. При этом вдоль арматурных стержней возникают трещины и отколы бетона с частичным обнажением арматуры.
Мерами защиты от коррозии железобетонных конструкций, находящихся в условиях агрессивной среды, в зависимости от степени агрессии являются: снижение фильтрующей способности бетона введением специальных добавок, повышение плотности бетона, увеличение толщины защитного слоя бетона, а также применение лакокрасочных или мастичных покрытий, оклеечной изоляции, замена портландцемента глиноземистым цементом, применение специального кислотостойкого бетона.


Версия для печати  Версия для печати


 


Энциклопедия по бетону Все о бетоне и его свойства Применение бетона в стройиндустрии Строительное оборудование Бетонные работы Все о кирпиче Все о цементе и его свойствах Нерудные материалы Сухие смеси Железобетонные иделия и конструкции Статьи о строительстве и стройиндустрии Строительные материалы Строительные материалы - часть 2 Снабжение Промышленноcть и оборудование Промышленноcть и оборудование - часть 2

Смотрите так же другие статьи
Технико-экономическая эффективность применения водонепроницаемого бетона Практика подтвердила высокую эффективность защитных мероприятий, ограждающих железобетонные конструкции и сооружения от вредного воздействия воды и других жидкостей. Помимо чисто технических преимуществ они являются экономичес... >>>
 
Торкретирование и набрызг-бетон Способ торкретирования заключается в нанесении на вертикальные, наклонные и горизонтальные поверхности одного или нескольких защитных слоев цементно-песчаного раствора (торкрета) при помощи цемент-пушки или бетонной смеси, нагнетаемой бетон-шприцмашиной. Этот способ... >>>
 
Транспортирование бетонной смеси по трубопроводам По трубопроводам транспортируют бетонную смесь с помощью бетононасосов и пневмонагнетателей. Отечественная промышленность выпускает поршневые бетононасосы производительностью 10, 25 и 40 м3/ч. Они могут перекачивать смесь на 350 м по горизонтали и ... >>>
 
Водоотделение Водоотделение является формой расслоения, при котором некоторая часть воды из смеси стремится подняться к поверхности свежеуложенного бетона. Это вызывается неспособностью твердых составных частей смеси при их оседании удерживать всю воду затворения. Пауэре трактует водоотделение как... >>>
 
Перемешивание бетонной смеси Бетономешалки. Цель перемешивания — обволакивание всех частиц заполнителя цементным тестом и превращение всех ингредиентов бетонной смеси в однородную массу, которая не должна нарушаться при выгрузке смеси из бетономешалки. Способ выгрузки бетонной смеси является... >>>
 
Равномерность перемешивания Для каждой бетономешалки необходимым является достаточное перераспределение материалов во всех частях камеры, чтобы получаемая бетонная смесь была однородной. Эффективность бетономешалки может быть оценена однородностью смеси, выпускаемой в несколько приемников при непр... >>>
 
«Прерывистый» зерновой состав заполнителя «Прерывистый» зерновой состав можно определить как зерновой состав, в котором одна или более одной промежуточных фракций пропущены. Термин «непрерывный» зерновой состав используют для того, чтобы отличить традиционный зер... >>>
 
Наибольшая крупность заполнителя Ранее уже упоминалось, что чем крупнее зерна заполнителя, тем меньше суммарная площадь его поверхности, требующая увлажнения. Таким   образом,  применение  крупного   заполнителя снижает водопотребность бетонной смеси, поэтому для уста... >>>
 
Использование крупных камней Первоначальная идея об использовании заполнителя в бетоне в качестве инертного материала может быть распространена на включение крупных камней в обычный бетон. Таким образом, фактический выход бетона по объему при заданном расходе цемента возрастает. Камни используют в... >>>
 


© 2005-2024 г. http://www.vogean.com Все права защищены. Группа компаний "ВОГЕАН".
Сайт работает на системе управления сайтом General-CMS

Rambler's Top100 Яндекс цитирования џндекс.Њетрика